Efficient Higher-Order Neural Networks for Classification and Function Approximation

نویسندگان

  • Joydeep Ghosh
  • Yoan Shin
چکیده

This paper introduces a class of higher-order networks called pi-sigma networks (PSNs). PSNs are feedforward networks with a single \hidden" layer of linear summing units, and with product units in the output layer. A PSN uses these product units to indirectly incorporate the capabilities of higher-order networks while greatly reducing network complexity. PSNs have only one layer of adjustable weights and exhibit fast learning. A PSN with K summing units provides a constrained K-th order approximation of a continuous function. A generalization of the PSN is presented that can uniformly approximate any measureable function. The use of linear hidden units makes it possible to mathematically study the convergence properties of various LMS type learning algorithms for PSNs. We show that it is desirable to update only a partial set of weights at a time rather than synchronously updating all the weights. Bounds for learning rates which guarantee convergence are derived. Several simulation results on pattern classiication and function approximation problems highlight the capabilities of the PSN. Extensive comparisons are made with other higher order networks and with multilayered perceptrons. The neurobiological plausibility of PSN type networks is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

Comparison of the performances of neural networks specification, the Translog and the Fourier flexible forms when different production technologies are used

This paper investigates the performances of artificial neural networks approximation, the Translog and the Fourier flexible functional forms for the cost function, when different production technologies are used. Using simulated data bases, the author provides a comparison in terms of capability to reproduce input demands and in terms of the corresponding input elasticities of substitution esti...

متن کامل

An ]Efficient Multilayer Quadratic Perceptron for Pattern Classification and Function Approximation

Abs t rac t : W e propose an architecture of a multilayer quadratic perceptron (MLQP) that combines advantages of multilayer perceptrons(MLPs) and higher-order feedforward neural networks. The features of MLQP are in its simple structure, practical number of adjustable connection weights and powerful learning ability. I n this paper, the architecture of MLQP is described, a backpropagation lear...

متن کامل

GDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers

Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...

متن کامل

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Neural Syst.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1992